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ABSTRACT 
A novel algorithm called sub-Markov random walk (subRW) algorithm is used for image segmentation along with 

prior nodes. Various random walk methods are used for clustering of objects and a combination of certain random 

walk methods will produce the sub-Markov random process. It is used to solve twigs segmentation problem by 

adding auxillary nodes along with label prior. The random method solves certain segmentation issues among thin 

and elongated objects. The proposed method solves the complex texture issues in natural images. It performs better 

than other random walk algorithms 
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I. INTRODUCTION 
 

Image segmentation is the process of partitioning an image into set of pixels. The set of pixels will represent the 

interested region or boundary. It is used to locate objects in the entire image. It is mostly useful for applications like 

image compression or object recognition in certain image analysis techniques. The image segmentation carried on 

the basis of color, texture, object etc., It involves various thresholding and clustering methods. Region based 

segmentation algorithms works better than other segmentation methods. 

 

Random walk (RW) has been widely used for many different tasks in computer vision and machine learning such as 

segmentation [20], [23], [28], [35], clustering [19], [25], ranking [13], [31], classification [10], [41] and the other 

applications [1], [13], [18], [22], [26], [33]. Grady and Funka-Lea [15] first proposed the RW for medical image 
segmentation and extended it in [20] for general image segmentation. The random walk method is to make unseeded 

pixels into the region through labeling unseeded pixels. The process is worked out by considering image as graph 

which is complete and undirected. The algorithm works as follows: 

 

 Allocate region seeds si for each region i 

 Calculate ui(x,y): the probability of first arriving si for a random walker starting from (x,y) 

 Assign (x,y) to Label k if uk(x,y) is the largest among ui(x,y) for i= 1…N 

 Identify the probability of each node to reach seeded pixel targeted than other non-targeted pixel. 

 Select the probability based on adjacency and degree of the node (i.e) pixel. 

 The transition matrix to be P=D-1 W except for labeled nodes.  

 
where P = probability matrix 

D-1 = degree matrix 

 

After introducing multilabeling concept for medical applications [15], many related and important methods based on 

RW [17], [23], [34], [35] multilabel random walker method [17] have been proposed, the Random Walk  has been 

extended to segment out disconnected objects by using prior models without labeling each objects as the user only 

needs to indicate labels on some objects and the other similar objects will be segmented out the interested region. 

Sinop and Grady [23] proposed a common framework to unify the previous methods such as Random Walk, graph 

cuts and shortest path algorithms for interactive segmentation. Furthermore, they added the popular watershed 

segmentation algorithm to this common framework [35] and made the analysis for the connections between these 

algorithms theoretically. This unified framework brings out some advantages and it opens new possibilities for using 
unary terms in traditional watershed algorithms to optimize more general models.  
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Recently, some researchers [27], [40] have turned their attention on segmenting natural images with complex 

textures by extending the RW algorithm and obtain better performance for these challenging images. They 

considered images to be graphs for solving the complex texture problem. Kim et al. [27] proposed a random walker 
with a restarting probability (RWR) for segmentation. It means that this random walker will return to the starting 

node with a probability c at each step, and walk to other adjacent nodes with probability 1 − c. Shen et al. [40] have 

developed the lazy random walk (LRW) for superpixel segmentation. A LRW will stay at the current node with a 

probability 1 − α and walk out along the edges connected with the current node with probability α. The compute 

time [14] is calculated between unlabeled and seed node. Wu et al. [37] proposed another similar RW algorithm 

called partially absorbing random walk (PARW) for applications based on cluster, such as ranking and 

classification. In PARW, a random walker is absorbed at current node i with a probability αi and follows a random 

edge out of it with probability 1 − αi . And they analyze the relations between PARW and other popular ranking and 

classification models, such as PageRank [7], hitting and commute times [32] and semi-supervised learning [11], 

[16]. Comparing the above three RW-based algorithms, we can conclude that they all satisfy the subMarkov 

property [30], i.e., the sum of transition probabilities q(i, j ) that a random walker starts from a node to other 
adjacent nodes is less than or equal to 1. The problem is to have a unified framework. The other problem is how to 

segment objects with thin and elongated parts (twig problem) in natural images, which is difficult for most RW-

based algorithms. This unified framework brings some benefits, including opening new possibilities for using unary 

terms in traditional watershed algorithms to optimize more general models. 

 

Recently, some researchers [27], [40] have focused on segmenting natural images with complex textures. They 

extend the RW algorithm and obtain better performance for these challenging images  

 

II. SUBRW WITH LABEL PRIOR FOR SEEDED IMAGE  
 

Segmentation 

In this paper, we proposed a novel subMarkov random walk (subRW) framework to unify four RW-based 

algorithms: RW, RWR, LRW and PARW, and extend it by adding label prior to solve the twig problem. First, 

according to the subMarkov property, we build a subRW framework for image segmentation. 

 

In subRW, a random walker will leave a graph G from a node i with probability ci and walk to the other adjacent 

nodes in G with probability 1 – ci . This random walker can be transformed to a random walker with Markov 

transition probability ( 𝑞(𝑖, 𝑗)  = 1) that walks in an expanded graph Ge. This graph is constructed by adding 
auxiliary staying nodes connected with seeds and auxiliary killing nodes connected with unseeded nodes into graph 

G. In order to further understand the subRW, we give a detailed optimization explanation. Then we unify the subRW 

and the aforementioned four RW-based algorithms in the expanded graph. After analyzing the connections between 

them, we design a new RW-based algorithm by changing edges or adding auxiliary nodes. According to this idea, 

we introduce a novel subRW with label prior to solve the twig problem. This label prior can be viewed as global 

‘seeds’ connected with all nodes. Each global ‘seed’ corresponds to a label.  

 

Adding some prior nodes connected with all nodes into graph Ge to build a new expanded graph Gp. Then we 

compute the probability that a random walker starting from each node reaches the staying nodes or the prior nodes in 

graph Gp, as the likelihoods probability of corresponding labels. In other words, we want to compute the probability 

of reaching the user specified seeds plus the probability of reaching the global ‘seeds’. These global ‘seeds’ will help 
to segment out the twig parts.  

 

The popular random walk with Markov transition probability is first added into our unified optimization framework, 

which makes this framework more complete. Considerable new theoretical analysis and proofs are added into the 

initial subRW algorithm such as the uniqueness and a new optimization explanation[29],[34] for subRW with label 

prior, which make it applicable for more vision applications based on optimization. The optimization framework and 

explanation improves the initial algorithm to be more suitable for multi-label segmentation. We also extend the 

original experiments from 2-label segmentation to multilabel segmentation.  
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The main contributions are summarized as follows: 

 A novel random walk (subRW) with label prior is proposed for unifying well-known RW-based algorithms, 

such as RW [20], RWR [27], LRW [40] and PARW [37], which all satisfy the SubMarkov property, 
making it easier to convert the intrinsic findings between them. 

 

 The subRW is interpreted as a general optimization problem, which makes it easier to find the latent 

problem of the subRW for different vision applications. 

For example, from the optimization explanation of subRW with label prior, we find the consistence 

between label prior and reaching probability may be violated in multi-label segmentation and we 

successfully solve this problem. 

 

 We further introduce a novel subRW algorithm by adding auxiliary nodes into the original graph. 

According to this idea, a novel subRW method with label prior is proposed to solve the twig segmentation 

problem with thin and elongated objects.  
 

A. The Sub Markov Random Walk 

Given a weighted graph G, a set of labeled nodes VM and a set of unlabeled nodes VU, where VU ∪ VM = V , the 

multilabeled image segmentation can be formulated as a labeling problem, where each node vi ∈ V should be 

assigned with a label from set LS. This problem can be solved by comparing the probability rlki of each node 

belonging to a label lk in our algorithm. As mentioned in the graph segmentation process[20],[21],[27] and [40] 

weight of an edge is calculated as 

 

wij = exp( (|| Ii – Ij ||)
2 / σ)+ϵ                                   (1) 

 
where Ii = denotes intensity of pixel i 

      σ= controlling parameter 

        ϵ = constant 

    

Before computing this probability, we define the subMarkov transition probability q on V as follows: 

 

Definition 1: q denotes a subMarkov transition probability if for each node vi 

                           𝑞(𝑖, 𝑗) ≤ 1                                             (2) 

 

According to [30], a subMarkov transition probability has the following property: 

Property 1: Through adding an auxiliary node , a sub- Markov transition probability q on G can be made into a 

(Markov) transition probability on V ∪ {_} by setting   𝑞(𝑖, 𝑗) = 1. The steady state probability equations are 

solved by using [3]-[5] techniques. 

 

The probability can be viewed as a probability that a random walker leaves graph G. According to the above 

property, we can design different subMarkov random walk algorithms by adding different auxiliary nodes. The other 

advantage of a subMarkov transition probability is that it will help to improve segmentation performance in images 

with complex texture. The laplacian matrix(2) is obtained by using diagonal and weighted matrix as mentioned in 

[6]. 

 

L=D-W                      (3) 

 

An object with twigs can be separated into two parts: main branch object and twig part. Usually, the twig part is 

similar to the main  object, so appropriate user-specified scribbles on the main object have included enough 

information for segmenting out the twig part. But most RW-based algorithms do not make full use of this 

information and often omit the twig part. In this section, we want to add a label prior constructed by these scribbles 

into the subRW to help segment out the twig part. 
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B. Adding Label Prior & auxiliary nodes 

In general, user-specified scribbles are considered as exact label prior.  The auxiliary nodes are added to the graph so 
as to obtain the target segment. Unfortunately, this prior only works at the seeded nodes and all unseeded nodes do 

not have this prior. Therefore, we want to give all nodes in V a new label prior, which maybe less exact than user 

scribbles, but can be used for unseeded nodes. This label prior is constructed by the user scribbles, i.e., the seeded 

nodes. We can use probability distributions to build the prior model. Assume a label lk  has an intensity distribution 

Hk for each node, where uk 
i denotes the probability density belonging to Hk at node vi . The probability distribution 

follows Gaussian mixture model[24], [36] and [38]. 
 

III. RESULT 
 

 

 

 
 

a)  Red and blue for background and foreground indications in the images 
 

 

 
 

b) Proposed result image                c) Segmented image 
 

 

IV. CONCLUSION 
We have presented a novel framework based on the sub- Markov random walk for interactive seeded image segmentation in this work. This 

framework can be explained as a traditional random walker that walks on the graph by adding some new auxiliary nodes, which makes our 

framework easily interpreted and more flexible. Under this framework, we unify the well-known RW-based algorithms, which satisfy the sub- 

Markov property and build bridges to make it easy to transform the findings between them. The experimental results have shown that our 

algorithm outperforms the state-of-the-art RW-based algorithms. The performance results has been measured by using normalized score. The 

metric limitation [39] was overcome by error rate ( i.e)  percentage of wrongly labeled nodes. This also proves that it is practicable to design a 

new subRW algorithm by adding new auxiliary nodes into our framework. The proof of matrix follows the theorem in [2]. In the future, we will 

extend our algorithm to more applications, such as centerline detection at 3D medical images [42] and classification [41].. 
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